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Hardware Synthesis of Explicit Model Predictive Controllers
Tor A. Johansen, Warren Jackson, Robert Schreiber, and Petter Tøndel

Abstract—The general solution to constrained linear and
piecewise linear model predictive control (MPC) has recently
been explicitly characterized in terms of piecewise-linear (PWL)
state feedback control. This means that a PWL controller can
be precomputed using parametric programming, and the exact
explicit MPC implementation amounts to the evaluation of a
PWL function in the control unit. It has recently been shown
that PWL function evaluation can be accelerated by searching a
binary tree data structure, leading to highly efficient, accurate,
and verifiable software implementation in low-cost embedded
control units. In this work, we report hardware synthesis results
for this type of PWL control, and show that explicit MPC solutions
can be implemented in an application specific integrated circuit
(ASIC) with about 20 000 gates, leading to computation times in
the microsecond scale. This opens the way for the use of highly
advanced control designs such as constrained MPC in small-scale
industrial and consumer electronics application areas that are
characterized by fast sampling or low cost, including mecha-
tronics, microelectromechanical systems (MEMS), automotive
control, power electronics, and acoustics. The main limitation of
the approach is that the memory requirements increase rapidly
with the problem dimensions.

Index Terms—Digital hardware, hardware synthesis, model pre-
dictive control (MPC), optimization, piecewise-linear (PWL) func-
tions.

I. INTRODUCTION

RECENTLY, several control design and synthesis methods
resulting in piecewise linear (PWL) state feedback con-

trol structures have been developed. These include exact explicit
PWL solutions to constrained linear model predictive control
(MPC) [1]–[3], MPC of piecewise linear systems [4], approxi-
mate explicit PWL solutions to nonlinear constrained MPC [5],
[6], hybrid MPC [7], in addition to optimal constrained control
allocation problems [8], [9].

These control design methods result in PWL controller func-
tions represented as

if
if

...
if .

(1)
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where is the input to the controller function, is the dimen-
sion of this vector, is the output dimension of the function

, and and are gain matrices and vec-
tors. The polyhedral sets of the polyhedral parti-
tion are represented by linear inequalities
(half-spaces separated by hyper-planes)

(2)

for . Such a partition may be assumed to sat-
isfy for (they intersect only at the
boundary), where denotes the open interior of the closed
set . The PWL controller is completely characterized by the
following data: .

The controller output will be given by the PWL function
and the argument will typically change at every

sampling instant based on measurements, user input, and signals
from a higher level control system. Controller implementation,
thus, requires evaluation of a PWL function (1) and (2) at each
sampling instant in the control unit.

In some variations of approximate explicit MPC, such as [10],
the polyhedral sets are represented by vertices

(3)

where denotes the convex hull. These representations are
equivalent, but require some modification of the algorithms used
for evaluation. In other variants of approximate explicit MPC,
such as [6] and [11], the partition has an orthogonal structure
(quad-tree or -tree [12], [13]) that may reduce computa-
tional complexity since the partition consists of hyperrectangles

(4)

rather than general polyhedra.
A binary search tree representation of arbitrary polyhedral

PWL functions (1) and (2) was suggested in [14] and [15]. It
leads to very low requirements for processing in the control unit,
but requires additional memory to store a precomputed binary
search tree data structure. In this work, we report some results
on digital hardware synthesis for PWL function evaluation logic
based on such a data structure. Compared to conventional MPC,
which relies on extensive numerical optimization in real time,
the benefits of explicit PWL evaluation include simpler verifi-
cation, low computational complexity, no recursive numerical
computations, and deterministic execution. The main limitation
of the explicit MPC approach is that the offline computational
load (during synthesis) and control unit memory requirements
usually increase quickly with the dimension and complexity of
the problem, making it useful mainly for small scale problems.
Still, this may not be prohibitive in some applications from areas
such as automotive [16]–[18], biomedical systems, aerospace,
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power electronics [19], microelectronics/ microelectromechan-
ical systems (MEMS) [20], acoustics, and rotating machinery
[5]. Recently, the problem of implementing explicit MPC ef-
ficiently on microprocessors and microcontrollers in practical
application1 has been given much attention [21]–[26].

A different approach to a computationally efficient im-
plementation of MPC is to make the core computations of a
numerical online solver as fast as possible. Suboptimal and
simplified MPC strategies [27]–[30], allow computational
complexity to be reduced at the cost of performance loss.
A general purpose processor is used in [31] for the efficient
implementation of MPC, while in [32] a parallel processing
real-time architecture for MPC is investigated, and in [33] a
field-programmable gate array (FPGA) implementation of an
iterative numeric quadratic programming solver is proposed
and tested. Dynamically reconfigurable analog/digital hard-
ware capable of handling MPC computation requirements was
proposed in [34], dynamic scheduling of real-time MPC was
considered in [35], while [36] and [37] describe methods for
reducing the precision of a microprocessor to the minimum
while maintaining close to optimal control performance. A
logarithmic number system (LNS)-based microprocessor was
proposed in [38] for computational cost savings. Compared
to explicit MPC, such approaches are expected to scale much
better with respect to memory use as the dimensions of the
problem increases.

The main contribution of the present paper is to consider
the option of direct hardware synthesis of explicit PWL MPC
controllers using a high-level hardware synthesis tool [39]. It
may prove to be beneficial or cost efficient in some applica-
tions where an application-specific integrated circuit (ASIC)
or FPGA implementation would be preferable to a micropro-
cessor-based implementation.

II. POLYHEDRAL PARTITION BINARY SEARCH

A typical polyhedral partition used to define a PWL function
solving a MPC problem contains several hundred or thousands
of polyhedra, even if complexity reduction methods such as [40]
and [41] are used. Often, neighboring regions contain the same
linear mapping such that the number of linear mapping coeffi-
cient matrices to store is significantly less than the polyhedral
regions that must be stored as linear inequality coefficient ma-
trices.

Evaluating a PWL function (1) for a given consists of the
following two steps:

• identify the polyhedral region index such that ;
• evaluate the corresponding linear function .
The second step is completely straightforward, while the first

step can be implemented in at least two ways, as described
below (see, also, [42] for a third way). Direct implementation of
the first step by sequentially searching through each polyhedral
region in order to determine the one that satisfies is
a simple, but computationally inefficient strategy. In the worst
case, matrix operations of the form must be car-
ried out, which is computationally expensive since the number

1See also ParOS website http://www.parostech.com/ParOS.html, and J. A.
Mandler et al., “Parametric model predictive control of air separation.” Ip Com
prior art database.

of polyhedral regions may amount to several thousands (see
[2] for worst case complexity results). The use of a binary search
tree to organize the search is a more efficient strategy [15], and
will be used here.

A. Binary Search Tree Representation

The PWL evaluation strategy described in [15] is to build a
binary search tree data structure that supports efficient search
for the polyhedral region that satisfies for any given

. The overall idea is based on the observation that evaluation
of a linear expression corresponding to a single hyper-
plane cut may significantly reduce the number of
candidate polyhedral regions. This is illustrated in Fig. 1, where
the partition contains 7
polyhedra. Consider the point near the center of the area. In
order to determine which polyhedron this point belongs to, the
linear expression may be evaluated. This hyperplane
cuts the partition into two parts: (below the hy-
perplane) and (above the hyperplane). With
the given , the sign of the evaluated expression shows
that is located above the hyperplane, and one can infer that

. In other words, 3 out of 7 polyhe-
dral regions have been excluded, and the remaining problem is
greatly reduced. This procedure can be repeated, as shown in
the second part of Fig. 1. By evaluating the linear expression

one can infer that . In other words,
two out of four remaining regions have been eliminated and the
problem is again greatly reduced. Since and are sepa-
rated by a single hyperplane, one can easily detect that
by evaluating this third linear expression. In summary, evalua-
tion of three linear expressions is sufficient to determine which
polyhedral region belongs to in this case. We observe that each
region is characterized by three or four linear inequalities, such
that an exhaustive search may require the evaluation of more
than 20 linear expressions in this case. For general algorithms
to construct such a binary search tree, we refer to [15] and re-
mark that the computational benefits are relatively much more
significant in larger examples.

The procedure illustrated in Fig. 1 is completely general,
and corresponds to the construction and traversal of a binary
search tree where at each node there is a linear expression
corresponding to a hyperplane that cuts the remaining partition
into three parts: Polyhedra that are completely on one side of
the hyperplane, polyhedra that are completely on the other side
of the hyperplane, and polyhedra that are cut by the hyperplane.
Estimating that each of these parts are of similar size, each
node in the search tree will exclude approximately 1/3 of the
polyhedral regions. This leads to a search tree depth

(5)

that is estimated to be logarithmic in , the number of poly-
hedra in the partition [15].

B. Binary Tree Search Algorithm

The PWL function evaluation problem consists of executing
at each sample two sets of nested loops.
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Fig. 1. Hyperplane cuts of polyhedral partition.

• Tree search loop: Starting at the root node of the binary
search tree the loop iterates through the nodes until a leaf
node is reached. At each loop iteration, an inner loop eval-
uates the hyperplane cut . A binary tree branch is
based on the sign of this expression. The leaf node iden-
tifies the linear expression to be evaluated to compute the
PWL function value.

• Control evaluation loop: Evaluation of the linear expres-
sion , where the index corresponds to
the leaf node. This is a nested loop corresponding to a ma-
trix multiplication operation.

Together the two loops form a control block. The total time
for execution of a control block is the sum of the times for the
two parts.

C. Numerical Roundoff Errors

Due to roundoff errors in numerical computations that leads
to the polyhedral representation of the PWL function (see [2]
and [3]), the mathematical partition property
for and ( is the whole region of
interest) will hold only approximately due to numerical errors.
This means that some regions may slightly overlap, and there
may be small gaps between some regions. The binary search
procedure will automatically complete the partition since when
a leaf node is reached, the corresponding linear function will
be evaluated without regard to numerical errors in the represen-
tation of the polyhedra. This means that the polyhedra will be

TABLE I
KEY PARAMETERS OF THE PWL FUNCTION EVALUATION PROBLEM

extended to cover the small gaps. Likewise, overlapping regions
will be uniquely resolved, and the boundary linear functions will
be extrapolated outside the original partition if happens to be
located outside the partition.

Numerical roundoff errors cannot accumulate in the tree
search loop since the only information carried from one
iteration to the next is the binary branching decision. The re-
sulting insensitivity to numerical errors means that fixed-point
arithmetics may be utilized as an alternative to floating-point
arithmetics without any complications. Consequently, the accu-
racy of implementation will degrade gracefully as the number
of bits used to represent the numerical data decreases (roundoff
errors), in the sense that numerical instability will not occur.
The hardware synthesis tests that we performed used 32-bit
integer arithmetic to represent the PWL function parameters
and 16-bit integers for array indices. Less costly circuits may
be achievable if shorter integers can be used, but scaling and
accuracy becomes an issue.

III. HARDWARE SYNTHESIS

In this section, we consider digital hardware synthesis of the
binary tree search algorithm in Section II-B, and how the com-
plexity of the resulting hardware design scales with the problem
parameters. The key parameters characterizing the PWL func-
tion complexity are defined in Table I.

A. Hardware Synthesis Approach

The hardware design program PICO-Express (a product
of Synfora Inc.), based on the HP Labs PICO research [39]
takes the C source code of the PWL function evaluation al-
gorithm, as described in Section II-B, as an input along with
some assumptions about the memory bandwidth. This program
then computes an efficient hardware architecture including
cache size, functional register assignments, and arithmetic
logic units (ALUs). It also generates estimates of performance,
execution time, and memory requirements. PICO produces
the hardware design expressed at the register-transfer level
(RTL) in a hardware design language, either VHDL or Ver-
ilog. The RTL design is tested and verified by PICO as well.
This design can be implemented in an FPGA or an ASIC. In
either case, routing and placement tools, as well as libraries
of parameterized macrocells (for the RTL level components
such as adders and registers) are used to generate the FPGA
or ASIC implementation. The main differences between ASIC
and FPGA implementations are as follows. ASICs can be faster,
can include analog as well as digital signals, can demonstrate
lower power consumption and are less expensive for large unit
volumes. FPGAs are more flexible during design time, less
expensive for small lots, and require less lead time.
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The tree search loop and control evaluation loop are pro-
cessed in a pipeline. It consists of a pipefill phase, the prolog,
where iterations are initiated at regular intervals. The initiation
interval is the number of clock cycles between sequential starts
of the inner loop. No iterations are complete during the prolog.
Next, the loop enters the steady-state where for every initiation
interval one iteration is completed and one new iteration is ini-
tiated. When the loop nears termination, it enters the pipedrain
state, known as the epilog, in which the pipeline is drained by
allowing iterations to complete without new iterations being ini-
tiated. PICO synthesizes a hardware design with the requested
initiation interval using heuristics to reduce the hardware cost.
(If an unachievable initiation interval is requested, PICO reports
that the requested throughput is impossible using its library of
functional elements.)

Both the tree search loop and the control evaluation loop are
doubly nested loops. In the tree search loop, whose synthesis we
report here, the outer loop is a loop over depth in the search tree.
The inner loop is a loop of iterations for the evaluation of the
dot product of the input vector with one hyperplane normal
vector . An initiation interval equal to one can be achieved
by PICO, since the inner loop recurrence (evaluation of )
is through an addition, and PICO can generate designs using a
one-cycle adder. There is also an important dependence of larger
latency. At the end of the inner loop, the dot product is first
compared with a constant , then a branch is taken to select one
of two possible child nodes in the search tree, then the index of
the selected node is used to start the lookup of the parameters
of the next hyperplane from memory. To accommodate the la-
tency of these operations and still achieve an initiation interval
equal to one, the inner loop is padded with a few “slack” itera-
tions at the front. These have no functionality, but they increase
the number of inner-loop iterations between the completion of
one dot product and the start of the next one, so that there are
enough cycles to cover this latency. For the case studies, all the
tables of hyperplane normals and pointer arrays that define
the search tree structure are assumed to be stored in fast SRAM
in the accelerator device. PICO can also synthesize designs in
which data arrays are kept in main memory.

B. Benchmark Problems

The characteristics of the benchmark problems used in our
case study are given in Table II. The double integrator and he-
licopter examples are described in more detail in [14], and the
quadruple integrator example in [42]. The MPC horizon is
the number of samples the MPC looks into the future when op-
timizing the control input in order not to violate the constraints
at some future point in time. Please see these references for a
description of the control design, performance, and additional
details.

C. Number of Clock Cycles Per Control Blocks

The total number of clock cycles required to execute one con-
trol block is summarized in Table III and illustrated in Fig. 2.
The number of clock cycles does not explicitly depend on the

TABLE II
BENCHMARK PROBLEM CHARACTERISTICS, WHERE h IS THE MPC HORIZON

TABLE III
HARDWARE SYNTHESIS RESULT SUMMARY WITH A CLOCK FREQUENCY OF

20 MHZ. THE SYMBOL h DENOTES THE MPC HORIZON. THE TIMES WILL

BE NEARLY A FACTOR OF 10 FASTER FOR A CLOCK FREQUENCY OF

200 MHZ. DATA ARE THOSE PROVIDED BY PICO EXPRESS 1.3

number of parameters but rather on the search depth of the tree.
The number of clock cycles , is approximately given by

(6)

where is the number of padding iterations needed, as
previously discussed. It is 2 at 10–20 MHz clock speeds and
4 for 200 MHz clock speeds. This variable represents the time
it takes to set up the inner loop and the number of clock cy-
cles for memory access. The first term is the number of clock
cycles for the tree search; the second is the number of clock cy-
cles needed for evaluation of once the appropriate polyhe-
dron has been determined. Because the search depth increases
as , the execution time also increases as . This
scaling can continue until the number of nodes is so large that
the data can no longer be held in scratch SRAM memory and
must be added as general system memory. The limits depend on
the technology of the chip but roughly 20 MB of SRAM is put
on current Intel chips so this represents a break point. In the fu-
ture, this number will go up. Beyond this limit, the access time
jumps to roughly 50 ns. For clock speeds of 10 and 20 MHz,
this is not a problem, but for 200 MHz clock speeds, this transi-
tion can lead to slower performance requiring a larger value for

. In Fig. 3, the dependence of the tree search clock cy-
cles as a function of clock speed and number of nodes is shown.
The dependence of the tree search on clock speed is not strong
up to 200 MHz indicating that for these problems clock speed
translates directly into improved control loop speed. It should
be mentioned that for 200 MHz clock speeds, even the slowest
benchmark problem can execute in about 1.1 s.
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Fig. 2. Number of clock cycles required to evaluate the PWL controller, as a
function of the dimension n = 2; 4; 6 of the parameters vector x (upper) and
as a function of the number of search tree nodes (lower).

Fig. 3. Number of clock cycles to evaluate PWL controller, as a function of the
chip clock speed. There is little overhead for increasing the clock speed up to
200 MHz. Higher speeds incur a significant penalty for memory access.

D. Number of Gates and Chip Circuit Area

The number of gates as a function of problem dimensions
are given in Table III and Fig. 4. Basically, the number of gates
(20 kGates) for the tree search does not depend strongly on the
problem parameters. The number of gates for the function eval-
uation also does not increase much with problem complexity.

Fig. 4. Number of gates (diamonds) for the tree search and memory (squares)
for the benchmark problems.

This result occurs because, in all cases, we have fixed the per-
formance at one loop iteration per clock cycle, and PICO has
produced the least costly hardware that it can, while achieving
this fixed (independent of parameters) throughput. Total latency,
as previously indicated, depends strongly on the parameters. If
we were to change the performance requirement up or down, we
would see an increase or a decrease in the gate count.

The size of the embedded SRAMs does not change, however,
with performance, and these may dominate the chip cost. The
number of SRAM cells scales directly with the number of search
tree nodes, see Fig. 4. For larger problems, this cost is by far the
dominant one for implementing the chip and may be prohibitive
for some applications.

PICO’s output is a hardware design expressed in Verilog,
which is an industry-standard hardware description language.
In order to generate an ASIC implementation, the Verilog spec-
ification [combined with the rest of the specification of an entire
system-on-chip (SoC) design, normally] is input to a logic-syn-
thesis step, which in turn creates a netlist, input to a place-and-
route step. We used a standard logic synthesis tool, Synopsys dc
Ultra, on the Helicopter design. The process targeted was
TSMC at 0.13 m. Synopsys gives a process-specific estimate
of chip area for an ASIC implementation. For this design, its
estimate is 91 000 (square microns); of this total, 53 000
is for sequential circuit elements (the memory used for the hy-
perplace normals takes up most of this) and 38 000 is for the
combinational circuit elements, the gates.

E. Discussion

If the clock frequency is assumed to be 200 MHz, then the
control loop execution time would range from 0.2 to 1.1 s for
the benchmark problems, see Table III and Fig. 5. This result
is rather important in that it indicates that control for mechan-
ical, thermal, and acoustic time scales can be handled by these
controllers with speed to spare, e.g., [16]–[18]. In particular,
lower level constrained multidimensional controls in mechan-
ical systems may readily be implemented using hardware im-
plementation of explicit MPC. Because the complexity of the
problem grows with the dimension of the parameter vector
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Fig. 5. Execution times for the various benchmark problems with a 20-MHz
clock frequency. For 200-MHz clock rates the times would be about 10 times
faster.

and the MPC horizon , [2], [14] these numbers should be min-
imized in order to improve the performance. The biggest cost
factor appears to be the memory needed for storing the hyper-
plane normals; reducing the complexity of the PWL function
representation is in fact an active area of research [4], [11], [14],
[40], [41], [43]. Moreover, a tradeoff between computational
and memory requirements can be made by constructing a binary
search tree of less depth such that at each leaf node a number of
candidate linear expression can be compared using a sequential
search [44] or other evaluation methods [42].

IV. CONCLUSION

We have shown that small-scale explicit MPC solutions ex-
actly represented as PWL functions can be efficiently imple-
mented in an ASIC using about 20 kGates and resulting in ex-
ecution times around 1 s with a 200-MHz clock frequency.
The binary search tree representation of polyhedral PWL map-
pings is the key data structure that allows an efficient binary
tree search to be applied. The cost of implementation is largely
determined by the requirement for memory to store the data
structures needed to hold the PWL functions and the associated
search tree. Methods for complexity reduction and PWL func-
tion approximation will greatly reduce implementation cost.
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